跨境互联网 跨境互联网
首页
  • AI 工具

    • 绘图提示词工具 (opens new window)
    • ChatGPT 指令 (opens new window)
  • ChatGPT

    • ChatGP T介绍
    • ChatGPT API 中文开发手册
    • ChatGPT 中文调教指南
    • ChatGPT 开源项目
  • Midjourney

    • Midjourney 文档
  • Stable Diffusion

    • Stable Diffusion 文档
  • 其他

    • AIGC 热门文章
    • 账号合租 (opens new window)
    • 有趣的网站
  • Vue

    • Vue3前置
  • JAVA基础

    • Stream
    • Git
    • Maven
    • 常用第三方类库
    • 性能调优工具
    • UML系统建模
    • 领域驱动设计
    • 敏捷开发
    • Java 测试
    • 代码规范及工具
    • Groovy 编程
  • 并发编程&多线程

    • 并发编程
    • 高性能队列 Disruptor
    • 多线程并发在电商系统下的应用
  • 其他

    • 面试题
  • 消息中间中间件

    • Kafka
    • RabbitMQ
    • RocketMQ
  • 任务调度

    • Quartz
    • XXL-Job
    • Elastic-Job
  • 源码解析

    • Mybatis 高级使用
    • Mybatis 源码剖析
    • Mybatis-Plus
    • Spring Data JPA
    • Spring 高级使用
    • Spring 源码剖析
    • SpringBoot 高级使用
    • SpringBoot 源码剖析
    • Jdk 解析
    • Tomcat 架构设计&源码剖析
    • Tomcat Web应用服务器
    • Zookeeper 高级
    • Netty
  • 微服务框架

    • 分布式原理
    • 分布式集群架构场景化解决方案
    • Dubbo 高级使用
    • Dubbo 核心源码剖析
    • Spring Cloud Gateway
    • Nacos 实战应用
    • Sentinel 实战应用
    • Seata 分布式事务
  • 数据结构和算法的深入应用
  • 存储

    • 图和Neo4j
    • MongoDB
    • TiDB
    • MySQL 优化
    • MySQL 平滑扩容实战
    • MySQL 海量数据存储与优化
    • Elasticsearch
  • 缓存

    • Redis
    • Aerospike
    • Guava Cache
    • Tair
  • 文件存储

    • 阿里云 OSS 云存储
    • FastDF 文件存储
  • 基础

    • Linux 使用
    • Nginx 使用与配置
    • OpenResty 使用
    • LVS+Keepalived 高可用部署
    • Jekins
  • 容器技术

    • Docker
    • K8S
    • K8S
  • 01.全链路(APM)
  • 02.电商终极搜索解决方案
  • 03.电商亿级数据库设计
  • 04.大屏实时计算
  • 05.分库分表的深入实战
  • 06.多维系统下单点登录
  • 07.多服务之间分布式事务
  • 08.业务幂等性技术架构体系
  • 09.高并发下的12306优化
  • 10.每秒100W请求的秒杀架构体系
  • 11.集中化日志管理平台的应用
  • 12.数据中台配置中心
  • 13.每天千万级订单的生成背后痛点及技术突破
  • 14.红包雨的架构设计及源码实现
  • 人工智能

    • Python 笔记
    • Python 工具库
    • 人工智能(AI) 笔记
    • 人工智能(AI) 项目笔记
  • 大数据

    • Flink流处理框架
  • 加密区

    • 机器学习(ML) (opens new window)
    • 深度学习(DL) (opens new window)
    • 自然语言处理(NLP) (opens new window)
AI 导航 (opens new window)

Revin

首页
  • AI 工具

    • 绘图提示词工具 (opens new window)
    • ChatGPT 指令 (opens new window)
  • ChatGPT

    • ChatGP T介绍
    • ChatGPT API 中文开发手册
    • ChatGPT 中文调教指南
    • ChatGPT 开源项目
  • Midjourney

    • Midjourney 文档
  • Stable Diffusion

    • Stable Diffusion 文档
  • 其他

    • AIGC 热门文章
    • 账号合租 (opens new window)
    • 有趣的网站
  • Vue

    • Vue3前置
  • JAVA基础

    • Stream
    • Git
    • Maven
    • 常用第三方类库
    • 性能调优工具
    • UML系统建模
    • 领域驱动设计
    • 敏捷开发
    • Java 测试
    • 代码规范及工具
    • Groovy 编程
  • 并发编程&多线程

    • 并发编程
    • 高性能队列 Disruptor
    • 多线程并发在电商系统下的应用
  • 其他

    • 面试题
  • 消息中间中间件

    • Kafka
    • RabbitMQ
    • RocketMQ
  • 任务调度

    • Quartz
    • XXL-Job
    • Elastic-Job
  • 源码解析

    • Mybatis 高级使用
    • Mybatis 源码剖析
    • Mybatis-Plus
    • Spring Data JPA
    • Spring 高级使用
    • Spring 源码剖析
    • SpringBoot 高级使用
    • SpringBoot 源码剖析
    • Jdk 解析
    • Tomcat 架构设计&源码剖析
    • Tomcat Web应用服务器
    • Zookeeper 高级
    • Netty
  • 微服务框架

    • 分布式原理
    • 分布式集群架构场景化解决方案
    • Dubbo 高级使用
    • Dubbo 核心源码剖析
    • Spring Cloud Gateway
    • Nacos 实战应用
    • Sentinel 实战应用
    • Seata 分布式事务
  • 数据结构和算法的深入应用
  • 存储

    • 图和Neo4j
    • MongoDB
    • TiDB
    • MySQL 优化
    • MySQL 平滑扩容实战
    • MySQL 海量数据存储与优化
    • Elasticsearch
  • 缓存

    • Redis
    • Aerospike
    • Guava Cache
    • Tair
  • 文件存储

    • 阿里云 OSS 云存储
    • FastDF 文件存储
  • 基础

    • Linux 使用
    • Nginx 使用与配置
    • OpenResty 使用
    • LVS+Keepalived 高可用部署
    • Jekins
  • 容器技术

    • Docker
    • K8S
    • K8S
  • 01.全链路(APM)
  • 02.电商终极搜索解决方案
  • 03.电商亿级数据库设计
  • 04.大屏实时计算
  • 05.分库分表的深入实战
  • 06.多维系统下单点登录
  • 07.多服务之间分布式事务
  • 08.业务幂等性技术架构体系
  • 09.高并发下的12306优化
  • 10.每秒100W请求的秒杀架构体系
  • 11.集中化日志管理平台的应用
  • 12.数据中台配置中心
  • 13.每天千万级订单的生成背后痛点及技术突破
  • 14.红包雨的架构设计及源码实现
  • 人工智能

    • Python 笔记
    • Python 工具库
    • 人工智能(AI) 笔记
    • 人工智能(AI) 项目笔记
  • 大数据

    • Flink流处理框架
  • 加密区

    • 机器学习(ML) (opens new window)
    • 深度学习(DL) (opens new window)
    • 自然语言处理(NLP) (opens new window)
AI 导航 (opens new window)
  • 任务调度

  • 消息队列

  • Zookeeper

    • Zookeeper简介
    • Zookeeper环境搭建
      • Zookeeper的搭建⽅式
        • 单机模式搭建:
        • 伪集群模式:
    • Zookeeper基本使用
    • Zookeeper应用场景
    • Zookeeper深入进阶
    • Zookeeper源码分析
  • java组件
  • Zookeeper
Revin
2023-07-23
目录

Zookeeper环境搭建

# Zookeeper的搭建⽅式

Zookeeper安装⽅式有三种,单机模式和集群模式以及伪集群模式。

■ 单机模式:Zookeeper只运⾏在⼀台服务器上,适合测试环境;

■ 集群模式:Zookeeper运⾏于⼀个集群上,适合⽣产环境,这个计算机集群被称为⼀个“集合体”

■ 伪集群模式:就是在⼀台服务器上运⾏多个Zookeeper 实例;

# 单机模式搭建:

zookeeper安装以linux环境为例:

1、下载

⾸先我们下载稳定版本的zookeeper http://zookeeper.apache.org/releases.html

2、上传

下载完成后,将zookeeper压缩包zookeeper-3.4.14.tar.gz上传到linux系统

3、解压缩压缩包

tar -zxvf zookeeper-3.4.14.tar.gz
1

4、进⼊ zookeeper-3.4.14⽬录,创建data⽂件夹

cd zookeeper-3.4.14
mkdir data
1
2

5、修改配置⽂件名称

cd conf
mv zoo_sample.cfg zoo.cfg
1
2

5、修改zoo.cfg中的data属性

dataDir=/root/zookeeper-3.4.14/data
1

6、zookeeper服务启动

进⼊bin⽬录,启动服务输⼊命令

./zkServer.sh start
1

输出以下内容表示启动成功

Zookeeper讲义_Page5_01

关闭服务输⼊命令

./zkServer.sh stop
1

输出以下提示信息

Zookeeper讲义_Page6_01

查看状态

./zkServer.sh status
1

如果启动状态,提示:

Zookeeper讲义_Page6_02

如果未启动状态,提示:

Zookeeper讲义_Page6_03

# 伪集群模式:

Zookeeper不但可以在单机上运⾏单机模式Zookeeper,⽽且可以在单机模拟集群模式 Zookeeper的运⾏,也就是将不同实例运⾏在同⼀台机器,⽤端⼝进⾏区分,伪集群模式为我们体验Zookeeper和做⼀些尝试性的实验提供了很⼤的便利。⽐如,我们在测试的时候,可以先使⽤少量数据在伪集群模式下进⾏测试。当测试可⾏的时候,再将数据移植到集群模式进⾏真实的数据实验。这样不但保证了它的可⾏性,同时⼤⼤提⾼了实验的效率。这种搭建⽅式,⽐较简便,成本⽐较低,适合测试和学习

注意事项:

⼀台机器上部署了3个server,也就是说单台机器及上运⾏多个Zookeeper实例。这种情况下,必须保证每个配置⽂档的各个端⼝号不能冲突,除clientPort不同之外,dataDir也不同。另外,还要在dataDir所对应的⽬录中创建myid⽂件来指定对应的Zookeeper服务器实例

■clientPort端⼝:

如果在1台机器上部署多个server,那么每台机器都要不同的 clientPort,⽐如 server1是2181,server2是2182,server3是2183

■dataDir和dataLogDir:

dataDir和dataLogDir也需要区分下,将数据⽂件和⽇志⽂件分开存放,同时每个server的这两变量所对应的路径都是不同的

■server.X和myid:

server.X 这个数字就是对应,data/myid中的数字。在3个server的myid⽂件中分别写⼊了1,2,3,那么每个server中的zoo.cfg都配 server.1 server.2,server.3就⾏了。因为在同⼀台机器上,后⾯连着的2个端⼝,3个server都不要⼀样,否则端⼝冲突

下载

⾸先我们下载最新稳定版本的zookeeper http://zookeeper.apache.org/releases.html

上传

下载完成后,将zookeeper压缩包 zookeeper-3.4.14.tar.gz上传到linux系统

解压压缩包

创建⽬录zkcluster

mkdir zkcluster
1

解压zookeeper-3.4.14.tar.gz到zkcluster⽬录下

tar -zxvf zookeeper-3.4.14.tar.gz -C /zkcluster
1

改变名称

mv zookeeper-3.4.14 zookeeper01
1

复制并改名

cp -r zookeeper01/ zookeeper02
cp -r zookeeper01/ zookeeper03
1
2

分别在zookeeper01、zookeeper02、zookeeper03⽬录下创建data及logs⽬录

mkdir data
cd data
mkdir logs
1
2
3

修改配置⽂件名称

cd conf
mv zoo_sample.cfg zoo.cfg
1
2

配置每⼀个Zookeeper 的dataDir(zoo.cfg) clientPort 分别为2181 2182 2183

clientPort=2181
dataDir=/zkcluster/zookeeper01/data
dataLogDir=/zkcluster/zookeeper01/data/logs

clientPort=2182
dataDir=/zkcluster/zookeeper02/data
dataLogDir=/zkcluster/zookeeper02/data/logs

clientPort=2183
dataDir=/zkcluster/zookeeper03/data
dataLogDir=/zkcluster/zookeeper03/data/logs
1
2
3
4
5
6
7
8
9
10
11

配置集群

(1)在每个zookeeper的 data ⽬录下创建⼀个 myid ⽂件,内容分别是1、2、3 。这个⽂件就是记录每个服务器的ID

touch myid
1

(2)在每⼀个zookeeper 的 zoo.cfg配置客户端访问端⼝(clientPort)和集群服务器IP列表。

server.1=10.211.55.4:2881:3881
server.2=10.211.55.4:2882:3882
server.3=10.211.55.4:2883:3883
#server.服务器ID=服务器IP地址:服务器之间通信端⼝:服务器之间投票选举端⼝
1
2
3
4

启动集群

依次启动三个zk实例

上次更新: 2025/04/03, 11:07:08
Zookeeper简介
Zookeeper基本使用

← Zookeeper简介 Zookeeper基本使用→

最近更新
01
tailwindcss
03-26
02
PaddleSpeech
02-18
03
whisper
02-18
更多文章>
Theme by Vdoing | Copyright © 2019-2025 跨境互联网 | 豫ICP备14016603号-5 | 豫公网安备41090002410995号
  • 跟随系统
  • 浅色模式
  • 深色模式
  • 阅读模式