基础入门-k8s 组件介绍
# 1 整体架构
下图清晰表明了 Kubernetes 的架构设计以及组件之间的通信协议。
下面是更抽象的一个视图
# 1.1 Master 架构
# 1.2 Node 架构
# 2 k8s部署组件介绍
我们把一个有效的 Kubernetes 部署称为集群,您可以将 Kubernetes 集群可视化为两个部分:
控制平面与计算设备(或称为节点),每个节点都是其自己的 Linux环境,并且可以是物理机或虚拟机,每个节点都运行由若干容器组成的容器集。
# 2.1 K8s 集群架构图
以下 K8s 架构图显示了 Kubernetes 集群的各部分之间的联系:
# 2.2 k8s控制组件
# 2.2.1 控制平面
K8s 集群的神经中枢
让我们从 Kubernetes 集群的神经中枢(即控制平面)开始说起。在这里,我们可以找到用于控制集群的 Kubernetes 组件以及一些有关集群状态和配置的数据,这些核心 Kubernetes 组件负责处理重要的工作,以确保容器以足够的数量和所需的资源运行。
控制平面会一直与您的计算机保持联系。集群已被配置为以特定的方式运行,而控制平面要做的就是确保万无一失。
# 2.2.2 kube-apiserver
K8s 集群API,如果需要与您的 Kubernetes 集群进行交互,就要通过 API
Kubernetes API 是 Kubernetes 控制平面的前端,用于处理内部和外部请求。API 服务器会确定请求是否有效,如果有效,则对其进行处理,您可以通过 REST 调用、kubectl 命令行界面或其他命令行工具(例如 kubeadm)来访问 API。
# 2.2.3 kube-scheduler
K8s 调度程序,您的集群是否状况良好?如果需要新的容器,要将它们放在哪里?这些是 Kubernetes 调度程序所要关注的问题。
调度程序会考虑容器集的资源需求(例如 CPU 或内存)以及集群的运行状况。随后,它会将容器集安排到适当的计算节点。
# 2.2.4 kube-controller-manager
K8s 控制器,控制器负责实际运行集群,而 Kubernetes 控制器管理器则是将多个控制器功能合而为一
控制器用于查询调度程序,并确保有正确数量的容器集在运行。如果有容器集停止运行,另一个控制器会发现并做出响应。控制器会将服务连接至容器集,以便让请求前往正确的端点。还有一些控制器用于创建帐户和 API 访问令牌。
# 2.2.5 etcd
键值存储数据库
配置数据以及有关集群状态的信息位于 etcd(一个键值存储数据库)中。etcd 采用分布式、容错设计,被视为集群的最终事实来源。
# 2.3 k8s运行组件
# 2.3.1 k8s节点
Kubernetes 集群中至少需要一个计算节点,但通常会有多个计算节点。
容器集经过调度和编排后,就会在节点上运行。如果需要扩展集群的容量,那就要添加更多的节点。
# 2.3.2 容器集
容器集是 Kubernetes 对象模型中最小、最简单的单元。
它代表了应用的单个实例。每个容器集都由一个容器(或一系列紧密耦合的容器)以及若干控制容器运行方式的选件组成。容器集可以连接至持久存储,以运行有状态应用。
# 2.3.3 容器运行时引擎
为了运行容器,每个计算节点都有一个容器运行时引擎。
比如 Docker,但 Kubernetes 也支持其他符合开源容器运动(OCI)标准的运行时,例如 rkt 和 CRI-O。
# 2.3.4 kubelet
每个计算节点中都包含一个 kubelet,这是一个与控制平面通信的微型应用。
kublet 可确保容器在容器集内运行,当控制平面需要在节点中执行某个操作时,kubelet 就会执行该操作。
# 2.3.5 kube-proxy
每个计算节点中还包含 kube-proxy,这是一个用于优化 Kubernetes 网络服务的网络代理。
kube-proxy 负责处理集群内部或外部的网络通信——靠操作系统的数据包过滤层,或者自行转发流量。
# 2.4 k8s 存储组件
# 2.4.1 持久存储
除了管理运行应用的容器外,Kubernetes 还可以管理附加在集群上的应用数据。
Kubernetes 允许用户请求存储资源,而无需了解底层存储基础架构的详细信息。持久卷是集群(而非容器集)所特有的,因此其寿命可以超过容器集。
# 2.4.2 容器镜像仓库
Kubernetes 所依赖的容器镜像存储于容器镜像仓库中。
这个镜像仓库可以由您自己配置的,也可以由第三方提供。
# 2.4.3 底层基础架构
您可以自己决定具体在哪里运行 Kubernetes。
答案可以是裸机服务器、虚拟机、公共云提供商、私有云和混合云环境。Kubernetes 的一大优势就是它可以在许多不同类型的基础架构上运行。